Conversiones entre sistemas numéricos.
Sistema Numérico de Base 10
Los sistemas numéricos están compuestos por símbolos y por las normas utilizadas para interpretar estos símbolos. El sistema numérico que se usa más a menudo es el sistema numérico decimal, o de Base 10. El sistema numérico de Base 10 usa diez símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. Estos símbolos se pueden combinar para representar todos los valores numéricos posibles.
El sistema numérico decimal se basa en potencias de 10. Cada posición de columna de un valor, pasando de derecha a izquierda, se multiplica por el número 10, que es el número de base, elevado a una potencia, que es el exponente. La potencia a la que se eleva ese 10 depende de su posición a la izquierda de la coma decimal. Cuando un número decimal se lee de derecha a izquierda, el primer número o el número que se ubica más a la derecha representa 100 (1), mientras que la segunda posición representa 101 (10 x 1= 10) La tercera posición representa 102 (10 x 10 =100). La séptima posición a la izquierda representa 106 (10 x 10 x 10 x 10 x 10 x 10 =1.000.000). Esto siempre funciona, sin importar la cantidad de columnas que tenga el número.
Ejemplo:
2134 = (2x10 potencia 3) + (1x10 potencia 2) + (3x10 potencia 1) + (4x10 potencia 0)
Hay un 4 en la posición correspondiente a las unidades, un 3 en la posición de las decenas, un 1 en la posición de las centenas y un 2 en la posición de los miles. Este ejemplo parece obvio cuando se usa el sistema numérico decimal. Es importante saber exactamente cómo funciona el sistema decimal, ya que este conocimiento permite entender los otros dos sistemas numéricos, el sistema numérico de Base 2 y el sistema numérico hexadecimal de Base 16. Estos sistemas usan los mismos métodos que el sistema decimal.
Sistema Numérico de Base 2
Los computadores reconocen y procesan datos utilizando el sistema numérico binario, o de Base 2. El sistema numérico binario usa sólo dos símbolos, 0 y 1, en lugar de los diez símbolos que se utilizan en el sistema numérico decimal. La posición, o el lugar, que ocupa cada dígito de derecha a izquierda en el sistema numérico binario representa 2, el número de base, elevado a una potencia o exponente, comenzando desde 0. Estos valores posicionales son, de derecha a izquierda, 2 potencia 0, 2 potencia 1, 2 potencia 2, 2 potencia 3, 2 potencia 4, 2 potencia 5, 2 potencia 6 y 2 potencia 7, o sea, 1, 2, 4, 8, 16, 32, 64 y 128, respectivamente.
Ejemplo:
101102 = (1 x 2 potencia 4 = 16) + (0 x 2 potencia 3 = 0) + (1 x 2 potencia 2 = 4) + (1 x 2potencia1= 2)+(0 x 2 potencia 0 = 0) = 22 (16 + 0 + 4 + 2 + 0)
Al leer el número binario (101102) de izquierda a derecha, se nota que hay un 1 en la posición del 16, un 0 en la posición del 8, un 1 en la posición del 4, un 1 en la posición del 2 y un 0 en la posición del 1, que sumados dan el número decimal 22.
Sistema Numérico de Base 8
El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que resulten más cómodos de escribir: el sistema octal y el sistema hexadecimal. Afortunadamente, resulta muy fácil convertir un número binario a octal o a hexadecimal.
En el sistema octal, usa ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7.Cada posición de columna de un valor, pasando de derecha a izquierda, se multiplica por el número 8, que es el número de base, elevado a una potencia, que es el exponente. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lugar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8.
Ejemplo:
El número octal 2738 = 2*8 potencia 2 + 7*8 potencia 1 + 3*8 potencia 0 = 2*64 + 7*8 + 3*1 = 187
Sistema Numérico de Base 16 (Hexadecimal)
El sistema hexadecimal usa dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decimales 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lugar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 16.
Ejemplo:
El valor del número hexadecimal 1A3F = 1*16 potencia 3 + A*16 potencia 2 + 3*16 potencia 1 + F*16 potencia 0
1*4096 + 10*256 + 3*16 + 15*1 = 6719
1A3F16 = 671910
Conversiones entre Sistemas Numéricos.
Conversión de Decimal a Binario
Para la conversión de decimal a binario se emplean dos métodos.
Método 1 por divisiones sucesivas, el cual consiste en:
Se va dividiendo la cantidad decimal por 2, apuntando los residuos, hasta obtener un cociente cero. El último residuo obtenido es el bit más significativo (MSB) y el primero es el bit menos significativo (LSB).
Ejemplo
Convertir el número 15310 a binario.
Figura 1.2.1.Ejemplo de conversión de decimal a binario
El resultado en binario de 15310 es 10011001
Método 2:
Otra forma de obtener el numero decimal a binario es realizar lo siguiente:
Convertir un número decimal al sistema binario es muy sencillo: basta con realizar divisiones sucesivas por 2 y escribir los restos obtenidos en cada división en orden inverso al que han sido obtenidos.
Por ejemplo, para convertir al sistema binario el número decimal 77 haremos una serie de divisiones que arrojarán los restos siguientes:
77 / 2 = 38 Resto: 1
38 / 2 = 19 Resto: 0
19 / 2 = 9 Resto: 1
9 / 2 = 4 Resto: 1
4 / 2 = 2 Resto: 0
2 / 2 = 1 Resto: 0
1 / 2 = 0 Resto: 1
y, tomando los restos en orden inverso obtenemos la cifra binaria:
Decimal 77 = Binario 1001101
Conversión de un número decimal a octal
La conversión de un número decimal a octal se hace con la misma técnica que ya hemos utilizado en la conversión a binario, mediante divisiones sucesivas por 8 y colocando los restos obtenidos en orden inverso. Por ejemplo, para escribir en octal el número decimal 12210 tendremos que hacer las siguientes divisiones:
122 / 8 = 15 Resto: 2
15 / 8 = 1 Resto: 7
1 / 8 = 0 Resto: 1
Tomando los restos obtenidos en orden inverso tendremos la cifra octal:
Decimal 122 = Octal 172
Conversión de un número decimal a hexadecimal
Utilizando la técnica habitual de divisiones sucesivas, la conversión de un número decimal a hexadecimal. Por ejemplo, para convertir a hexadecimal del número decimal 1735 será necesario hacer las siguientes divisiones:
1735 / 16 = 108 Resto: 7
108 / 16 = 6 Resto: C es decir, 12 en decimal
6 / 16 = 0 Resto: 6
De ahí que, tomando los restos en orden inverso, resolvemos el número en hexadecimal:
decimal 1735 = hexadecimal 6C7
Conversión de Binario a Octal
Observa la tabla siguiente, con los siete primeros números expresados en los sistemas decimal, binario y octal:
Cada dígito de un número octal se representa con tres dígitos en el sistema binario. Por tanto, el modo de convertir un número entre estos sistemas de numeración equivale a "expandir" cada dígito octal a tres dígitos binarios, o en "contraer" grupos de tres caracteres binarios a su correspondiente dígito octal.
Por ejemplo, para convertir el número binario 101001011 a octal tomaremos grupos de tres bits y los sustituiremos por su equivalente octal:
101 = 5 octal
001 = 1 octal
011 = 3 octal
y, de ese modo el número binario 101001011 = octal 513
La conversión de números octales a binarios se hace, siguiendo el mismo método, reemplazando cada dígito octal por los tres bits equivalentes. Por ejemplo, para convertir el número octal 750 a binario, tomaremos el equivalente binario de cada uno de sus dígitos:
7 octal = 111
5 octal = 101
0 octal = 000
y, por tanto el número octal 750 = 111101000 binario
Conversión de números binarios a hexadecimales y viceversa
Del mismo modo que hallamos la correspondencia entre números octales y binarios, podemos establecer una equivalencia directa entre cada dígito hexadecimal y cuatro dígitos binarios, como se ve en la siguiente tabla:
La conversión entre números hexadecimales y binarios se realiza "expandiendo" o "contrayendo" cada dígito hexadecimal a cuatro dígitos binarios. Por ejemplo, para expresar en hexadecimal el número binario 101001110011 bastará con tomar grupos de cuatro bits, empezando por la derecha, y reemplazarlos por su equivalente hexadecimal:
1010 = A
0111 = 7
0011 = 3
y, por tanto el número binario 101001110011 = al hexadecimal A73
En caso de que los dígitos binarios no formen grupos completos de cuatro dígitos, se deben añadir ceros a la izquierda hasta completar el último grupo. Por ejemplo:
101110 = 00101110 = 2E en hexadecimal
La conversión de números hexadecimales a binarios se hace del mismo modo, reemplazando cada dígito hexadecimal por los cuatro bits equivalentes de la tabla. Para convertir a binario, por ejemplo, el número hexadecimal 1F6 hallaremos en la tabla las siguientes equivalencias:
1 = 0001
F = 1111
6 = 0110
y, por lo tanto el número hexadecimal 1F6 = al binario 000111110110
|
Comentarios
Publicar un comentario